Clostridium sordellii Lethal-Toxin Autoprocessing and Membrane Localization Activities Drive GTPase Glucosylation Profiles in Endothelial Cells
نویسندگان
چکیده
Clostridium sordellii infections cause gangrene and edema in humans and gastrointestinal infections in livestock. One of the principle virulence factors is TcsL, a large protein toxin which glucosylates host GTPases to cause cytopathic and cytotoxic effects. TcsL has two enzymatic domains, an N-terminal glucosyltransferase domain (GTD) and an autoprocessing domain responsible for release of the GTD within the cell. The GTD can then use its N-terminal membrane localization domain (MLD) for orientation on membranes and modification of GTPases. This study describes the use of conditionally immortalized murine pulmonary microvascular endothelial cells as a model for the study of TcsL functional activities. Point mutations that disrupt the glucosyltransferase, autoprocessing, or membrane localization activities were introduced into a recombinant version of TcsL, and the activities of these mutants were compared to those of wild-type toxin. We observed that all mutants are defective or impaired in cytotoxicity but differ in their modification of Rac1 and Ras. The data suggest a model where differences in GTPase localization dictate cellular responses to intoxication and highlight the importance of autoprocessing in the function of TcsL. IMPORTANCE Clostridium sordellii is a bacterium that can infect humans and cause serious disease and death. The principle virulence factor associated with clinical symptoms is a large protein toxin known as lethal toxin. The mechanism of lethal-toxin intoxication is assumed to be similar to that of the homologous toxins from C. difficile, but very few studies have been done in the context of endothelial cells, a relevant target in C. sordellii infections. This study was designed to test the role of the lethal-toxin enzymatic activities and membrane localization in endothelial cell toxicity and host substrate modification.
منابع مشابه
Glucosylation of Rho/Ras Proteins by Lethal Toxin – Implications of Actin Re-Organization and Apoptosis in C. Sordellii-Associated Disease
Clostridium sordellii causes disease in livestock and life-threatening illnesses in humans. Pathogenic C. sordellii strains produce up to seven virulence factors, including lethal toxin (TcsL), hemorrhagic toxin, a hemolysin, a DNAse, a collagenase, and a lysolecithinase cell. TcsL exhibits an A-B toxin-like structure and enters its target cells by receptor-mediated endocytosis. Inside the, Tcs...
متن کاملEhRho1, a RhoA-like GTPase of Entamoeba histolytica, is modified by clostridial glucosylating cytotoxins.
Clostridial glucosylating cytotoxins inactivate mammalian Rho GTPases by mono-O glucosylation of a conserved threonine residue located in the switch 1 region of the target protein. Here we report that EhRho1, a RhoA-like GTPase from the protozoan parasite Entamoeba histolytica, is glucosylated by clostridial cytotoxins. Recombinant glutathione S-transferase-EhRho1 and EhRho1 from cell lysate of...
متن کاملpH-enhanced cytopathic effects of Clostridium sordellii lethal toxin.
Clostridium sordellii lethal toxin (TcsL) is a large clostridial toxin (LCT) that glucosylates Ras, Rac, and Ral. TcsL differs from other LCTs because it modifies Ras, which does not cycle from cytosol to membrane. By using a suite of inhibitors, steps in cell entry by TcsL were dissected, and entry appears to be dependent on endosomal acidification. However, in contrast to TcdB, TcsL was subst...
متن کاملLow pH-induced formation of ion channels by clostridium difficile toxin B in target cells.
Clostridium difficile toxin B (269 kDa), which is one of the causative agents of antibiotic-associated diarrhea and pseudomembranous colitis, inactivates Rho GTPases by glucosylation. Here we studied the uptake and membrane interaction of the toxin with eukaryotic target cells. Bafilomycin A1, which prevents acidification of endosomal compartments, blocked the cellular uptake of toxin B in Chin...
متن کاملInteraction of the Rho-ADP-ribosylating C3 exoenzyme with RalA.
RhoA, -B, and -C are ADP-ribosylated and biologically inactivated by Clostridium botulinum C3 exoenzyme and related C3-like transferases. We report that RalA GTPase, which is not ADP-ribosylated by C3, inhibits ADP-ribosylation of RhoA by C3 from C. botulinum (C3bot), Clostridium limosum (C3lim), and Bacillus cereus (C3cer) but not from Staphylococcus aureus (C3stau) in human platelet membranes...
متن کامل